
University of Groningen
Exam Numerical Mathematics 1, June 19, 2015

Use of a simple calculator is allowed. All answers need to be motivated.
In front of the exercises you find its weight. In fact it gives the number of tenths which can be
gained in the final mark. In total 5.4 points can be scored with this exam.

Exercise 1

(a) 4 Given the data pairs (x, y) = {(−1, 0), (−0.5,−1), (0.5, 1)}. Give first the general
form of the interpolation polynomial expressed in the Lagrange characteristic polynomials
and next indicate how it is defined for an interpolation on the given data points.

Solution: The Lagrange characteristic polynomials are given by

lk(x) =

n∏
j=0
j 6=k

x− xj
xk − xj

and the Lagrange form of the interpolant by

pn(x) =
n∑
k=0

yklk(x)

Computing the Lagrange characteristic polynomials gives us,

l0(x) =

(
x+ 0.5

−1 + 0.5

)(
x− 0.5

−1− 0.5

)
=

(x+ 0.5)(x− 0.5)

(−0.5)(−1.5)

l1(x) =

(
x+ 1

−0.5 + 1

)(
x− 0.5

−0.5− 0.5

)
=

(x+ 1)(x− 0.5)

−0.5

l2(x) =

(
x+ 1

0.5 + 1

)(
x+ 0.5

0.5 + 0.5

)
=

(x+ 1)(x+ 0.5)

1.5

so that p2 is given by, p2(x) = 0l0(x)− 1l1(x) + 1l2(x).

(b) 4 The conditioning of interpolation is expressed by the inequality

max
x∈I
|pn(x)− p̃n(x)| ≤ Λ max

k∈{0,...,n}
|yk − ỹk|

where pn(x) is the interpolation polynomial based on the pairs (xk, yk) and p̃n(x) on
the pairs (xk, ỹk), k = 0, . . . , n. Show that Lebesque’s constant Λ is given by Λ =∑n

k=0 maxx∈I |lk(x)|, where lk(x), k = 0, . . . n, are the Lagrange characteristic polyno-
mials. Give Λ for the interpolation on [−1, 0.5] and data points given in part (a).



Solution:

max
x∈I
|pn(x)− p̃n| = max

x∈I
|
n∑
k=0

yklk(x)−
n∑
k=0

ỹklk(x)|

= max
x∈I
|
n∑
k=0

lk(x)(yk − ỹk)|

≤
n∑
k=0

max
x∈I
|lk(x)(yk − ỹk)|

≤
n∑
k=0

max
x∈I
|lk(x)| max

k∈{0,...,n}
|yk − ỹk|

= Λ max
k∈{0,...,n}

|yk − ỹk|

For parabolas, the extrema are located at the boundaries of the interval and in the
middle between the zeros of the parabola.

max
[−1,0,0.5]

|l0(x)| = max{1, 1

3
, 0} = 1

max
[−1,−0.25,0.5]

|l1(x)| = max{0, 1.125, 0} = 1.125

max
[−1,−0.75,0.5]

|l2(x)| = max{0, 1

24
, 0} = 1

so

Λ = 1 + 1.125 + 1 = 3.125

(c) 2 Define both the midpoint rule and the composite midpoint rule for an integration of a
function f over an interval [a, b].

Solution: The midpoint rule is given by∫ b

a
f(x) dx ≈ Im(f) = (b− a)f

(
a+ b

2

)
The composite trapezoidal rule is given by∫ b

a
f(x) dx =

n−1∑
i=0

∫ xi+1

xi

f(x) dx ≈
n−1∑
i=0

Hf

(
xi + xi+1

2

)
where H = (b− a)/n and xi = a+ iH, i = 0, . . . , n.

(d) 4 The error of the midpoint rule is given by Et = −(b− a)3f ′′(ξ)/24, for some ξ ∈ [a, b].
What is the degree of exactness of this method? Why? Show that the error of the
composite midpoint rule is given by Ec = −(b− a)H2f ′′(ζ)/24, for some ζ ∈ [a, b], where



H is the length of the subintervals in [a, b].
Hint: You may use that for any continuous function g it holds that there exist a ζ in
[a, b] such that ng(ζ) =

∑n
i=0 g(xi) for an arbitrary set of points xi, i = 1, . . . , n in [a, b].

Solution: The degree of exactness of the midpoint rule is 1 because all linear functions
are integrated exactly (the error is 0 since the second derivative f ′′ is zero).
The error using a composite midpoint rule is given by the sum of the errors made in
each subinterval,

Ec =
n∑
i=0

Eti =
n∑
i=0

−(xi+1 − xi)3f ′′(ξi)/24

= −H
3

24

n∑
i=0

f ′′(ξi)

Using the hint we get,

Ec =
n∑
i=0

Eti = −H
3

24
nf ′′(ζ), n = (b− a)/H,

= −(b− a)
H2

24
f ′′(ζ),

for some ζ ∈ [a, b].

Exercise 2

(a) Consider the linear system Ax = b and suppose that the matrix A is an m × n matrix
with m > n of full rank (i.e. the columns form an independent set of vectors) leading to
an overdetermined equation.

(i) 4 One way of solving this is minimizing (Ax − b, Ax − b) over x. Show that this
minimization leads to ATAx = AT b, where ATA is a square matrix of order n.

Solution: We want to minimize the dot product with respect to x, that is for
each i = 0, . . . n we want,

0 =
∂

∂xi
(Ax− b, Ax− b)

= (
∂

∂xi
(Ax− b), Ax− b) + (Ax− b, ∂

∂xi
(Ax− b))

Now using ∂x
∂xi

= ei with ei is the standard basis vector,

0 = (Aei, Ax− b) + (Ax− b, Aei))
= 2(Aei, Ax− b)
= 2(ei, A

TAx−AT b)



Since this should hold for all i = 0, . . . n it follows that we must have,

ATAx−AT b = 0

This means that we need to solve the system ATAx = AT b where the matrix
ATA is a n× n matrix.

(ii) 1 What is the numerical problem with solving the equation in the previous part?

Solution: By solving for ATAx = AT b we increase the condition number, mak-
ing the solution more sensitive to round off errors.

(b) Consider the iteration x(k+1) = Ax(k) with x(0) given and suppose that one eigenvalue
λ1 of A is bigger in absolute value than all others. Moreover, A has a complete set of
eigenvectors.

(i) 4 Show that x(k), will converge to the eigenvector associated to λ1 if x(0) has a
nonzero component in the direction of this eigenvector. Also indicate the convergence
factor.

Solution: First we write x(0) =
∑n

i=1 αivi where vi is the eigenvector of A
corresponding to the eigenvalue λi. It follows that,

x(k) = Ax(k) = Akx(0) = Ak
n∑
i=1

αivi =
n∑
i=1

αiλ
k
i vi

= λk1(α1v1 +
n∑
i=2

αi(
λi
λ1

)kvi︸ ︷︷ ︸
Goes to 0 as k →∞, since | λi

λ1
| < 1

)

Thus x(k) converges to the direction of v1 with a convergence factor of λ2
λ1

.

(ii) 2 How can we obtain an estimate of λ1 during the iteration?

Solution: Since x(k+1) = Ax(k) ≈ λ1x
(k), x(k) ≈ γv1. We can approximate λ1

by,

λ
(k)
1 =

(x(k+1), x(k))

(x(k), x(k))
or λ

(k)
1 =

x
(k+1)
i

x
(k)
i

where the index i is chosen to be corresponding to the largest element of x(k) in
absolute sense.

(iii) 3 Assume |λ1| 6= 1. Depending on whether it is bigger or less than one, what will
eventually happen if we perform the iteration on a computer? And what is done



to prevent this situation if we are only interested in finding λ1 and the associated
eigenvector?

Solution: When |λ| < 1 then x(k) → 0 and at some point it will be rounded to
0 due to floating point arithmetic.
When |λ| > 1 then x(k) → ∞ and it will become too large to fit in the floating
point representation used by Matlab.
We may prevent this by scaling xk in each iteration.

y(k+1) = Ax(k), x(k+1) =
y(k+1)

||y(k+1)||

Exercise 3

Consider the nonlinear system f(x) = 0, where f is a mapping from Rn to Rn.

(a) 4 Derive Newton’s method for the above system and indicate which linear system has to
be solved in each step.

Solution: We may use the Taylor series of f to derive Newton’s method,

f(x) = f(x0) +Df(x0)(x− x0) + h.o.t.

where Df is the Jacobian matrix of f . If f(x) = 0 then, (ignoring higher order terms)
we get,

0 = f(x0) +Df(x0) (x− x0)︸ ︷︷ ︸
∆x

Here ∆x is unknown and needs to found by solving Df(x0)∆x = −f(x0). Newton’s
method for systems is given by the following process,

Solve for ∆x Df(xk)∆x = −f(xk)
Update xk+1 = xk + ∆x

(b) 2 Suppose f1 = sin(x1 + 2x2 − 1), f2 = arctan(x2 − x1). Give the Jacobian matrix of f .

Solution:

J =

[
∂f1
∂x1

∂f1
∂x2

∂f2
∂x1

∂f2
∂x2

]
=

[
cos (x1 + 2x2 − 1) 2 cos (x1 + 2x2 − 1)

−1
1+(x2−x1)2

1
1+(x2−x1)2

]



(c) 4 Zeros of functions can be found by a fixed point method x(k+1) = φ(x(k)). Show that
this fixed point method will converge if |φ′(α)| < 1 and x(0) close enough to the fixed
point α.

Solution: For a fixed point we have α = φ(α) and x(k+1) = φ(x(k)). Using the mean
value theorem we may find,

x(k+1) − α = φ(x(k))− φ(α) = φ′(ξ(k))(x(k) − α)

where ξ(k) ∈ (xk, α). If x(0) is chosen such that |φ(ξ(k))| < 1 for all k, then it follows
that,

|x(k+1) − α| ≤ |φ′(ξ(k))||(x(k) − α)|
≤ |φ′(ξ(k))||φ′(ξ(k−1))||(x(k−1) − α)|
≤ Lk|x(0) − α|

where L = max
i=0,...,k

{|φ′(ξ(k))|} < 1. It follows that x(k) converges to α.

(d) 4 Derive Aitken’s extrapolation formula,

x̃(k+1) =
x(k+1)x(k−1) − (x(k))2

x(k+1) − 2x(k) + x(k−1)

where x̃(k+1) is the extrapolated value based on x(k−1), x(k) = φ(x(k−1)), and x(k+1) =
φ(x(k)) = φ(φ(x(k−1))).

Solution: Recall xk+1 = φ(xk) and

x(k+1) − α = φ(x(k))− φ(α) = φ′(ξ(k))(x(k) − α)

where ξ(k) ∈ (xk, α). Rewriting gives,

α
(

1− φ(x(k))
)

= xk+1 − φ(x(k))xk ⇒ α =
xk+1 − φ(x(k))xk

1− φ(x(k))

We now want to find a “nice” approximation of φ′(ξ(k)) using the forward finite dif-
ference method.

φ′(ξk) ≈ φ(xk)− φ(xk−1)

xk − xk−1
=
xk+1 − xk
xk − xk−1

=
∆xk+1

∆xk



we may now use this approximation to derive Aitken’s extrapolation formula,

α̃ = =
xk+1 − ∆xk+1

∆xk
xk

1− ∆xk+1

∆xk

=
∆xkxk+1 −∆xk+1xk

∆xk −∆xk+1

=
(xk − xk−1)xk+1 − (xk+1 − xk)xk

(xk − xk−1)− (xk+1 − xk)

=
xk−1xk+1 − x2

k

xk+1 − 2xk + xk−1

Exercise 4

Consider a system of ODEs,

d

dt
y(t) = f(t, y(t)),with y(0) = y0 (1)

(a) 4 Consider the method uk+1 = uk−1 + 2∆tf(tk, uk)

(i) 4 State the root condition. Show that this method satisfies this condition. What
does this mean for stability?

Solution: If we denote with rj the roots of the characteristic polynomial,

π(r) = rp+1 −
p∑
j=0

ajr
p−j

then the numerical method satisfies the root condition if |rj | ≤ 1 and if |rj | = 1
then we must have π′(rj) 6= 1.

In this case we have π(r) = r1+1− 1r1−1 = r2− 1 = 0⇔ r = ±1 and π′(r) = 2r.
Hence this method satisfies the root condition which implies that the method is
zero-stable.

(ii) 4 Show that the local truncation error is of second order in ∆t. What is the
conclusion for convergence, if you combine this with part (i).

Solution: The local truncation error is given by,

τn+1(∆t) =
yn+1 − yn−1 − 2∆tf(tn, yn)

∆t

where yn is an exact solution to the ODE. We may approximate yn+1 and yn−1



using a Taylor series at yn,

yn+1 = yn + ∆ty′(tn) +
∆t2

2
y′′(tn) +

∆t3

6
y′′′(ξ)

yn−1 = yn −∆ty′(tn) +
∆t2

2
y′′(tn)− ∆t3

6
y′′′(η)

subtracting both approximations gives,

yn+1 − yn−1 = 2∆ty′(tn) +
∆t3

6
(y′′′(ξ)− y′′′(η))

It follows that the local truncation error is given by,

τn+1(∆t) =
∆t2

6
(y′′′(ξ)− y′′′(η))

Which is of second order. Hence the method is consistent and as we’ve shown
that it is also zero stable, it is convergent.

(b) 4 Consider on [0, 1] for u(x, t) the diffusion equation ∂u/∂t = ∂2u/∂x2 + x exp(−t) with
the initial condition u(x, 0) = sin(πx) and boundary conditions u(0, t) = sin2(t) and
u(1, t) = 0. Let the grid in x-direction be given by xi = i∆x where ∆x = 1/m. Show

that, by using ∂2u
∂x2

(xi, t) ≈ u(xi+1,t)−2u(xi,t)+u(xi−1,t)
∆x2

in the PDE, one obtains a system of
ordinary differential equations (ODEs) of the above form. Give the components of the
vector function f and the initial vector.

Solution: After discretization we have,

dui
dt

=
ui+1 − 2ui + ui−1

∆x2
+ xie

−t

for i = 1, . . . ,m− 1 and for i = 0 and i = m we have the boundary conditions,

u0(t) = sin2(t),

um(t) = 0.

the initial condition for i = 1, . . . ,m− 1 is given by,

ui(0) = sin(πxi)

lastly the right hand side of (1) is given by,

f1(t) =
−2u1 + u2

∆x2
+ x1e

−t +
sin2(t)

∆x2

fi(t) =
ui−1 − 2ui + ui+1

∆x2
+ xie

−t i = 2, . . . ,m− 2

fm−1(t) =
um−2 − 2um−1

∆x2
+ xm−1e

−t


